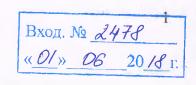


Отзыв


ОАО «ОКБ БН КОННАС», как ведущего предприятия, на диссертационную работу **Кузьмина Антона Вячеславовича** «Исследование характеристик лопастного насоса для добычи нефти при изменении геометрии проточной части его ступени», представленную к защите на соискание ученой степени кандидата технических наук по специальности 05.02.13 «Машины, агрегаты и процессы (нефтегазовая отрасль)».

По результатам рассмотрения и обсуждения специалистами ОАО «ОКБ БН КОННАС» с привлечением специалистов и научных работников АО «Новомет-Пермь».

Актуальность

Количество добываемой нефти РФ при помощи установок электроцентробежных насосов, по различным данным, составляет более 75% от общего объема добычи. Значительную долю установок, используемых в добыче нефти, составляют центробежные насосы малой и средней быстроходности $_{5}$ =40-150.

Первостепенная задача, стоящая при создании таких машин, состоит в обеспечении максимально возможного гидравлического КПД и напорности ступени (отношение напор к единице длины установки). Однако, из-за осложненных условий эксплуатации нефтедобывающих скважин возникла необходимость в создании малогабаритных насосных установок для добычи нефти. Появление таких центробежных насосных установок рождает задачи по их обусловленными, проектированию, связанные С особенностями например, рабочих колес, вязкостью перекачиваемой изменением частоты вращения жидкости; особенностями влияния геометрии проточной части ступени на течение потока и ее характеристику из-за уменьшения радиального габарита ступени. Поэтому вопросы, связанные с исследованием особенностей рабочего процесса данного вида оборудования при уменьшении его диаметрального габарита, имеют актуальность и практический интерес.

Научная новизна

- Разработана математическая модель для установления особенностей поведения характеристики ступени погружного центробежного насоса для добычи нефти при изменении ее габарита.
- Установлен характер реакции напора и гидравлического КПД в характеристике ступени погружного центробежного насоса для добычи нефти на изменение конструктивных параметров ее проточной части для различных габаритных групп.

Оценка основного содержания работы

Диссертационная работа состоит из введения, четырех глав, основных выводов, заключения, списка литературы.

Во введении обосновывается актуальность темы диссертационной работы, сформулированы цель и задачи исследования, научная новизна и практическая значимость.

<u>В первой главе</u> проведен анализ фонда нефтяных скважин и ограничений по использованию нефтегазового оборудования, связанных с конструкционными особенностями скважин.

Проведен обзор существующих способов эксплуатации нефтяных скважин с боковыми стволами малого диаметра и основные проблемы их эксплуатации. Выяснено, что особенности работы ступени малогабаритного УЭЦН и их взаимосвязь с конструктивными особенностями ступени требуют более детального изучения.

Определены цели и главные задачи исследования.

Во второй главе рассмотрены особенности конструкции ступеней погружного центробежного насоса для добычи нефти, определенные ограничениями диаметральных и габаритных размеров.

Проанализированы основные геометрические размеры ступени погружного центробежного насоса и их влияние на ее характеристику.

Рассмотрены математические модели, применяемые для решения прямой и обратной математических задач, связанных с описанием работы динамических машин. Описана методика расчета на основе теории подобия на примере методике ОКБ БН, использующей безразмерные комплексы. Проанализирована методика расчета основных размеров ступени, использующая в основе конструктивно-аналитический метод с использованием струйной модели течения потока с описанием ее основных особенностей, позволяющие достаточно точно описывать реальные процессы, проходящие в ступени.

На основании анализа существующих методик расчета ступеней лопастных

насосов совместно с другими соавторами разработано учебное пособие по методике проектирования и исследования ступеней динамических насосов.

Установлено, что эффективность ступени можно повысить, правильно подобрав геометрические соотношения в ней, форму проточных частей и параметры потока. Из приведенного обзора видно, что не установлено полностью влияние основных соотношений размеров ступени на ее эффективность. Важное место также занимает вопрос о величине напора и влияние на него эпюры скорости на выходе из колеса и отношения диаметров ведущего и ведомого диска колеса.

Проанализированы особенности изменения конструкции ступени погружного центробежного насоса при изменении его габаритной группы. Сделаны выводы по изменению отдельных показателей в характеристике ступени при оптимизации в зависимости от габаритной группы и причины этих изменений.

Рассмотрено несколько работ, в которых приводятся результаты оптимизации проточной части ступени с описанием применяемых изменений геометрии и причин изменения характеристики ступени при их использовании. Представлены схемы модернизации, применяемые в данной работе к ступеням двух габаритных групп 2A и 5A, рассмотрены причины их выбора и описаны ожидаемые изменения в характеристике ступени и причины их появления.

В третьей главе проведен аргументированный выбор модели для расчета ступени. Описан принцип работы выбранной математической модели. Создана расчетная модель для численного эксперимента и выполнен выбор граничных условий для нее, обоснован выбор количества ступеней в исследуемой сборке. Обоснован выбор систем координат, применяемых в данном численном эксперименте. Составлена последовательность получения характеристики ступени в численном эксперименте. Учтены возможные погрешности численного эксперимента от реальных испытаний и причины их появления, связанные с особенностью математической модели, применяемой программой.

Представлен пример сборки ступени, адаптированной к расчету, и срез неструктурированной объемной сетки ее проточной части. Показаны результаты численных экспериментов шести сборок ступеней с эпюрами распределения давлений в рабочем колесе, направляющем аппарате и меридиональном сечении ступени. Показана эпюра распределения скоростей потока на выходе из рабочего колеса с целью детального установления особенностей течения для каждой габаритной группы. Представлены характеристики ступеней по отдельности и сравнение характеристик базового и двух схем каждой габаритной группы. Для более детального сравнения проведена регрессия данных численного эксперимента для первой схемы и базового варианта с составлением таблиц отклонений для установления характера изменения характеристики ступени при изменении габаритной группы. Установлено, что в характеристике ступени габаритной группы 5А при изменении геометрии ее проточной части большему влиянию на это подвергается напор, чем гидравлический КПД, у 2А-наоборот.

<u>В четвертой главе</u> дано описание, что по данным, полученным в результате проектирования ступени центробежного насоса по разработанной методике, была изготовлена ступень на ЗВ принтере.

Получены расходно-напорные характеристики изготовленной ступени погружного центробежного насоса и протестированные на горизонтальном и на вертикальном стендах, и с помощью численного эксперимента.

Проведены испытания ступени электроприводного центробежного насоса ЭЦН02А-20-460 с открытыми рабочими колесами на заводском стенде ООО «Ижнефтепласт» и компьютере с использованием программы вычислительной гидродинамики STAR-CCM+. Данные стендовых испытаний обеих ступеней верифицированы с данными численного эксперимента, что показало хорошую сходимость, наблюдаемую на сравнительных характеристиках во всех случаях, как с открытыми, так и с закрытыми рабочими колесами. В результате сравнения численного эксперимента с данными стендовых испытаний установлено, что погрешность численного

эксперимента по напору по сравнению с испытаниями на стенде составляет не более 5%, что позволяет использовать разработанную методику проектирования ступеней центробежного насоса и программу вычислительной гидродинамики STAR-CCM+ как надежный и достаточно точный инструмент построения и оценки эффективности ступеней погружных центробежных насосов, как с открытыми, так и с закрытыми рабочими колесами.

На основе данных численных экспериментов представлена спроектированная ступень центробежного насоса с открытыми рабочими колесами ЭЦН02А-20-460, для которой разработаны и утверждены программа и методика промысловых испытаний. Два насоса ЭЦН02А-20-460 с открытыми рабочими колесами запущены и выведены на режим в скважинах.

Спроектированное оборудование успешно внедрено и проходит дальнейшие промысловые испытания согласно утвержденной программе.

<u>В заключении</u> приведены основные результаты и выводы. Дается список литературы из 111 источников.

Практическая значимость

Выбрана программа расчета потока в каналах проточной части ступеней низкой и средней быстроходности. Создана расчетная модель расчета и проектирования ступеней.

По созданной методике расчетом разработаны и изготовлены ступени, прошедшие стендовые и опытно-промысловые испытания на скважинах ООО «Лукойл-Западная Сибирь».

Подготовлено совместно с другими соавторами и издано учебное пособие «Проектирование и исследование ступеней динамических насосов», используемое в учебном процессе РГУ нефти и газа (НИУ) имени И.М.Губкина при подготовке

бакалавров и магистров.

Создана методика проектирования ступеней погружных центробежных насосов для добычи нефти, прошедшие стендовые испытания и опытно-промысловые испытания на скважинах ООО «ЛУКОЙЛ-Западная Сибирь».

Замечания к работе

- В работе приводятся характеристики секции насоса ЭЦНО 2A-20, проведенные на стенде в «Ижнефтепласте». Испытания проведены методически некорректно режимы взяты с открытой задвижки к закрытой. Из-за этого погрешность проведенных испытаний повышена.
- Работа, представленная с измененными акцентами в сторону учебного пособия по проектированию и исследованию ступеней динамических насосов, могла быть более значимой и интересней.

Заключение

Диссертационная работа Кузьмина Антона Вячеславовича «Исследование характеристик лопастного насоса для добычи нефти при изменении геометрии проточной части его ступени» является самостоятельной завершенной научной работой.

В целом, представленная диссертационная работа соответствует по своей актуальности научной новизне и практической ценности требованиям ВАК по защите диссертаций на соискание ученой степени кандидата технических наук по специальности 05.02.13 «Машины, агрегаты и процессы (нефтегазовая отрасль)».

Технический директор

Председатель научно-технического совета

ОАО «ОКБ БН КОННАС»

Зам. генерального директора по науке

ОАО «ОКБ БН КОННАС»

Лауреат Правительство РФ

в области науки и техники

О.А.Толстогузов

III P A reep